Reactive force field potential for carbon deposition on silicon surfaces.
نویسندگان
چکیده
In this paper a new interatomic potential based on the Kieffer force field and designed to perform molecular dynamics (MD) simulations of carbon deposition on silicon surfaces is implemented. This potential is a third-order reactive force field that includes a dynamic charge transfer and allows for the formation and breaking of bonds. The parameters for Si-C and C-C interactions are optimized using a genetic algorithm. The quality of the potential is tested on its ability to model silicon carbide and diamond physical properties as well as the formation energies of point defects. Furthermore, MD simulations of carbon deposition on reconstructed (100) silicon surfaces are carried out and compared to similar simulations using a Tersoff-like bond order potential. Simulations with both potentials produce similar results showing the ability to extend the use of the Kieffer potential to deposition studies. The investigation reveals the presence of a channelling effect when depositing the carbon at 45° incidence angle. This effect is due to channels running in directions symmetrically equivalent to the (110) direction. The channelling is observed to a lesser extent for carbon atoms with 30° and 60° incidence angles relative to the surface normal. On a pristine silicon surface, sticking coefficients were found to vary between 100 and 73%, depending on deposition conditions.
منابع مشابه
Evaluation of the Effect of Ni-Co NPs for the Effective Growth of Carbon Nanotubes by TCVD System
A systematic study was conducted to understand the influences of catalyst combination as Ni-Co NPs on carbon nanotubes (CNTs) grown by Chemical Vapor Deposition (TCVD). The DC-sputtering system was used to prepare Co and Ni-Co thin films on silicon substrate. Ni- Co nanoparticles were used as metal catalyst for growing carbon nanotubes from acetylene (C2H2) gas in 850 ̊ C during 15 min. Carb...
متن کاملUniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces
Carbon nanotubes (CNTs) and nanofibres (CNFs) are grown on bulk-micromachined silicon surfaces by thermal and plasma-enhanced chemical vapour deposition (PECVD), with catalyst deposition by electron beam evaporation or from a colloidal solution of cobalt nanoparticles. Growth on the peaked topography of plasma-etched silicon ‘micrograss’ supports, as well as on sidewalls of vertical structures ...
متن کاملNanostructured DLC coatings for self-assembly applications
1 Abstract— The special characteristics and singular properties of diamond-like carbon (DLC) thin films deposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, are suitable for self assembly applications as protective coating and as nanostructured surfaces. In this master thesis project, nanostructured DLC surfaces will be designed and cha...
متن کاملSynthesis of carbon nano structures on Fe/Cu/AI and Al/Steel by thermal chemical vapour deposition method
Using C2H2, 112 and As gases at 550'C, carbon nanotubes were fabricated on the surfaces of twosubstrates coated by nano thin layers of metal catalysts by DC magnetron sputtering. AYStamless steel andFe/CteAl, by thermal chemical vapor deposition (TCVD) The surface properties of the substrates wereparticularly investigated, and the effect of treatment of the substrates on the CNT's growth is cri...
متن کاملElectrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates
Fabrication of uniform thin coatings of multi-walled carbon nanotubes (MWCNTs) by electrophoretic deposition (EPD) on semiconductor (silicon) substrates with 3-aminopropyl-triethoxysilane (APTES) surface functionalization has been studied extensively in this report. The gradual deposition and eventual film formation of the carbon nanotubes (CNTs) is greatly assisted by the Coulombic force of at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 24 39 شماره
صفحات -
تاریخ انتشار 2012